Quantcast
Channel: Active questions tagged dimension-theory-algebra - Mathematics Stack Exchange
Viewing all articles
Browse latest Browse all 52

How to prove the isomorphism $ \mathcal{O}_{X,c} \cong \mathcal{O}_{V,c} / I_{V}(X) \mathcal{O}_{V,c} $ [closed]

$
0
0

If $V$ is an affine variety and $X, Y \subsetneq V$ are pure dimensional and closed, and $c$ is a zero dimensional irreducible component of $X \cap Y$.

Then how to prove $ \mathcal{O}_{X,c} \cong \mathcal{O}_{V,c} / I_{V}(X) \mathcal{O}_{V,c} $ ?

I honestly have no idea how to approach this question after thinking about it, I think I'm missing a fundamental point here. I greatly appreciate any tips.


Viewing all articles
Browse latest Browse all 52

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>